
Eigenmath Manual

February 3, 2008

1

Math Eigenmath Alternate form and/or comment

−a -a

a+ b a+b

a− b a-b

ab a*b a b with a space in between

a

b
a/b

a

bc
a/b/c

a2 a^2

√
a a^(1/2) sqrt(a)

1√
a

a^(-1/2) 1/sqrt(a)

a(b+ c) a*(b+c) a (b+c) with a space in between

f(a) f(a)

 ab
c

 (a,b,c)

(
a b
c d

)
((a,b),(c,d))

T 12 T[1,2] tensor component access

2 km 2*"km" units of measure are quoted

2

Let us begin by considering the following passage from Vladimir Nabokov’s
autobiography Speak, Memory.

A foolish tutor had explained logarithms to me much too early,
and I had read (in a British publication, the Boy’s Own Pa-
per, I believe) about a certain Hindu calculator who in exactly
two seconds could find the seventeenth root of, say, 3529471145
760275132301897342055866171392 (I am not sure I have got this
right; anyway the root was 212).

We can check Nabokov’s arithmetic by typing the following into Eigenmath.

212^17

After pressing the return key, Eigenmath displays the following result.

3529471145760275132301897342055866171392

So Nabokov did get it right after all. We can enter float or click on the float
button to scale the number down to size.

float

3.52947× 1039

3

Avogadro’s constant

There is a proposal to define Avogadro’s constant as exactly 84446886 to
the third power.1 This number corresponds to an ideal cube of atoms with
84,446,886 atoms along each edge. Let us check the difference between the
proposed value and the measured value of (6.0221415 ± 0.0000010) × 1023

atoms.

A=84446886^3
B=6.0221415*10^23
A-B

−5.17173× 1016

0.0000010*10^23

1× 1017

We see that the proposed value is within the experimental error. Just for
the fun of it, let us factor the proposed value.

factor(A)

23 × 33 × 16673 × 84433

1Fox, Ronald and Theodore Hill. “An Exact Value for Avogadro’s Number.” American
Scientist 95 (2007): 104–107. The proposed number in the article is actually 844468883. In
a subsequent addendum the authors reduced it to 844468863 to make the number divisible
by 12. See www.physorg.com/news109595312.html

4

Zero to the zero power

The following example draws a graph of the function f(x) = |xx|. The graph
shows why the convention 00 = 1 makes sense.

f(x)=abs(x^x)
xrange=(-2,2)
yrange=(-2,2)
draw(f)

We can see how 00 = 1 results in a continuous line through x = 0. Now let
us see how xx behaves in the complex plane.

f(t)=(real(t^t),imag(t^t))
xrange=(-2,2)
yrange=(-2,2)
trange=(-4,2)
draw(f)

5

Geometric series

A geometric series converges according to the formula

∞∑
k=0

ak =
1

1− a
, |a| < 1

If we use a = −1/2 and for practical purposes only count up to nine instead
of infinity, we should have

9∑
k=0

(
−1

2

)k
≈ 2

3

The above calculation can be done in one line of code using the sum function.

sum(k,0,9,(-0.5)^k)
0.666016

The following example uses an intermediate variable.

f=sum(k,0,9,a^k)
f

f = 1 + a+ a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9

eval(f,a,-1/2)
341
512

float(last)
0.666016

As seen on the first line, no result is printed when a symbol is defined. When
you do in fact want to see the value of a symbol, just enter it as shown on
the second line.

When a result is displayed, it is also stored in the symbol last.

6

The following example shows how to define a function.

f(a)=sum(k,0,9,a^k)
f

f = sum(k, 0, 9, ak)

f(-1/2)
341
512

f(-0.5)
0.666016

Eigenmath handles function definitions in a special way. Unlike a normal
symbol, a function definition is not evaluated immediately. The following
example demonstrates the difference.

f=sum(k,0,9,a^k)
f

f = 1 + a+ a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9

f(a)=sum(k,0,9,a^k)
f

f = sum(k, 0, 9, ak)

Why are they handled differently? Well, suppose we want to define f as a
function of two variables, a and n, like this.

f(a,n)=sum(k,0,n,a^k)

In this case it is not possible to evaluate the sum right away. The value
of n will not be known until f is actually used somewhere. Consequently,
Eigenmath does not normally evaluate a function when it is defined. Now,
having said that, there are two work arounds that provide exceptions to the
rule. They are eval and quote.

f=quote(sum(k,0,9,a^k))
f

f = sum(k, 0, 9, ak)

f(a)=eval(sum(k,0,9,a^k))
f

f = 1 + a+ a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9

7

Units of measure

Quoted strings can be used to express units of measurement in a calculation.
For example, the space shuttle accelerates from zero to 17,000 miles per hour
in 8 minutes. The average acceleration of the space shuttle is

v=17000*"mile"/"hr"
t=8*"min"/(60*"min"/"hr")
v/t

8

Draw

draw(f, x) draws a graph of the function f of x. The second argument
can be omitted when the dependent variable is literally x or t. The vectors
xrange and yrange control the scale of the graph.

draw(x^2)

xrange=(-1,1)
yrange=(0,2)
draw(x^2)

clear

The clear command (or a click of the Clear button) resets xrange and
yrange. This needs to be done so that the next graph appears as shown.

9

Parametric drawing occurs when a function returns a vector. The vector
trange controls the parameter range. The default range is (−π, π).

f=(cos(t),sin(t))
draw(5*f)

trange=(0,pi/2)
draw(5*f)

10

Here are a couple of interesting curves and the code for drawing them. First
is a lemniscate.

clear
X=cos(t)/(1+sin(t)^2)
Y=sin(t)*cos(t)/(1+sin(t)^2)
draw(5*(X,Y))

Next is a cardioid.

r=(1+cos(t))/2
u=(cos(t),sin(t))
xrange=(-1,1)
yrange=(-1,1)
draw(r*u)

11

Eigenmath scripts

Here is a simple example that draws the graph of y = mx+ b.

y=m*x+b
m=1/2
b=-3
draw(y)

Now suppose that we want to draw the graph with a different m. We could
type in everything all over again, but it would be easier in the long run to
write a script. Then we can go back and quickly change m and b as many
times as we want.

To prepare a script, click on the Edit Script button. Then enter the script
commands, one per line, as shown above. Then click on the Run Script
button to see the graph.

Eigenmath runs a script by stepping through it line by line. Each line is
evaluated just like a regular command. This continues until the end of the
script is reached. After the script runs, you can click Edit Script and go
back and change something.

12

Sometimes it is desirable to have a script print a few comments when it
runs. This can be accomplished by placing the desired text in quotes on a
single line. For example, the script

"Here is the value of pi."
float(pi)

displays the following when run.

Here is the value of pi.

3.14159

Eigenmath includes a simple debug facility. Setting the variable trace to 1
causes each line of the script to be printed as the script runs. Normally this
setting would be the first line in the script.

trace=1
--Now each line of the script is printed as it runs.

13

Complex numbers

When Eigenmath starts up, it defines the symbol i as i =
√
−1. Other than

that, there is nothing special about i. It is just a regular symbol that can
be redefined and used for some other purpose if need be.

Complex quantities can be entered in rectangular or polar form.

a+i*b
a+ ib

exp(i*pi/3)

exp(
1
3
iπ)

Converting to rectangular or polar coordinates simplifies mixed forms.

A=1+i
B=sqrt(2)*exp(i*pi/4)
A-B

1 + i− 21/2 exp(
1
4
iπ)

rect
0

Rectangular complex quantities, when raised to a power, are multiplied out.

(a+i*b)^2
a2 − b2 + 2iab

When a and b are numerical and the power is negative, the evaluation is
done as follows.

(a+ ib)−n =
[

a− ib
(a+ ib)(a− ib)

]n
=
[
a− ib
a2 + b2

]n
Of course, this causes i to be removed from the denominator. Here are a
few examples.

1/(2-i)
2
5

+
1
5
i

(-1+3i)/(2-i)
−1 + i

14

The absolute value of a complex number returns its magnitude.

abs(3+4*i)
5

In light of this, the following result might be unexpected.

abs(a+b*i)
abs(a+ ib)

The result is not
√
a2 + b2 because that would assume that a and b are real.

For example, suppose that a = 0 and b = i. Then

|a+ ib| = | − 1| = 1

and √
a2 + b2 =

√
−1 = i

Hence
|a+ ib| 6=

√
a2 + b2 for some a, b ∈ C

The mag function is an alternative. It treats symbols like a and b as real.

mag(a+b*i)

(a2 + b2)1/2

15

Linear algebra

dot is used to multiply vectors and matrices. The following example shows
how to use dot and inv to solve for X in AX = B.

A=((3.8,7.2),(1.3,-0.9))
B=(16.5,-22.1)
X=dot(inv(A),B)
X (

−11.2887
8.24961

)
One might wonder why the dot function is necessary. Why not simply use
X = inv(A) ∗ B like scalar multiplication? The reason is that the software
normally reorders factors internally to optimize processing. For example,
inv(A) ∗ B in symbolic form is changed to B ∗ inv(A) internally. Since
the dot product is not commutative, this reordering would give the wrong
result. Using a function to do the multiply avoids the problem because
function arguments are not reordered.

It should be noted that dot can have more than two arguments. For example,
dot(A,B,C) can be used for the dot product of three tensors.

16

The following example demonstrates the relation A−1 = adj A/ det A.

A=((a,b),(c,d))

inv(A) 
d

ad− bc
− b

ad− bc

− c

ad− bc
a

ad− bc


adj(A) (

d −b
−c a

)
det(A)

ad− bc

inv(A)-adj(A)/det(A) (
0 0
0 0

)
Sometimes a calculation will be simpler if it can be reorganized to use adj
instead of inv. The main idea is to try to prevent the determinant from
appearing as a divisor. For example, suppose for matrices A and B you
want to check that

A−B−1 = 0

Depending on the complexity of det B, the software may not be able to find
a simplification that yields zero. Should that occur, the following alternative
can be tried.

(det B) ·A− adj B = 0

17

The adjunct of a matrix is related to the cofactors as follows.

A=((a,b),(c,d))
C=((0,0),(0,0))
C[1,1]=cofactor(A,1,1)
C[1,2]=cofactor(A,1,2)
C[2,1]=cofactor(A,2,1)
C[2,2]=cofactor(A,2,2)
C

C =
(
d −c
−b a

)
adj(A)-transpose(C) (

0 0
0 0

)

18

Calculus

d(f, x) returns the derivative of f with respect to x. The x can be omitted
for expressions in x.

d(x^2)
2x

The following table summarizes the various ways to obtain multiderivatives.

∂2f

∂x2
d(f,x,x) d(f,x,2)

∂2f

∂x ∂y
d(f,x,y)

∂m+n+···f

∂xm ∂yn · · ·
d(f,x,...,y,...) d(f,x,m,y,n,...)

The gradient of f is obtained by using a vector for x in d(f, x).

r=sqrt(x^2+y^2)
d(r,(x,y)) 

x

(x2 + y2)1/2
y

(x2 + y2)1/2


The f in d(f, x) can be a tensor function. Gradient raises the rank by one.

F=(x+2y,3x+4y)
X=(x,y)
d(F,X) (

1 2
3 4

)

19

The function f in d(f) does not have to be defined. It can be a template
function with just a name and an argument list. Eigenmath checks the
argument list to figure out what to do. For example, d(f(x), x) evaluates to
itself because f depends on x. However, d(f(x), y) evaluates to zero because
f does not depend on y.

d(f(x),x)
∂(f(x), x)

d(f(x),y)
0

d(f(x,y),y)
∂(f(x, y), y)

d(f(),t)
∂(f(), t)

As the final example shows, an empty argument list causes d(f) to always
evaluate to itself, regardless of the second argument.

Template functions are useful for experimenting with differential forms. For
example, let us check the identity

div(curl F) = 0

for an arbitrary vector function F.

F=(F1(x,y,z),F2(x,y,z),F3(x,y,z))
curl(U)=(d(U[3],y)-d(U[2],z),d(U[1],z)-d(U[3],x),d(U[2],x)-d(U[1],y))
div(U)=d(U[1],x)+d(U[2],y)+d(U[3],z)
div(curl(F))

0

20

integral(f, x) returns the integral of f with respect to x. The x can be
omitted for expressions in x. A multi-integral can be obtained by extending
the argument list.

integral(x^2)
1
3
x3

integral(x*y,x,y)
1
4
x2y2

defint(f, x, a, b, . . .) computes the definite integral of f with respect to x
evaluated from a to b. The argument list can be extended for multiple
integrals.

The following example computes the integral of f = x2 over the domain of
a semicircle. For each x along the abscissa, y ranges from 0 to

√
1− x2.

defint(x^2,y,0,sqrt(1-x^2),x,-1,1)

1
8
π

As an alternative, the eval function can be used to compute a definite inte-
gral step by step.

I=integral(x^2,y)
I=eval(I,y,sqrt(1-x^2))-eval(I,y,0)
I=integral(I,x)
eval(I,x,1)-eval(I,x,-1)

1
8
π

21

Here is a useful trick. Difficult integrals involving sine and cosine can of-
ten be solved by using exponentials. Trigonometric simplifications involving
powers and multiple angles turn into simple algebra in the exponential do-
main. For example, the definite integral∫ 2π

0

(
sin4 t− 2 cos3(t/2) sin t

)
dt

can be solved as follows.

f=sin(t)^4-2*cos(t/2)^3*sin(t)
f=circexp(f)
defint(f,t,0,2*pi)

−16
5

+
3
4
π

Here is a check.

g=integral(f,t)
f-d(g,t)

0

22

The fundamental theorem of calculus was established by James Gregory, a
contemporary of Newton. The theorem is a formal expression of the inverse
relation between integrals and derivatives.∫ b

a
f ′(x) dx = f(b)− f(a)

Here is an Eigenmath demonstration of the fundamental theorem of calculus.

f=x^2/2
xrange=(-1,1)
yrange=xrange
draw(d(f))

draw(integral(d(f)))

The first graph shows that f ′(x) is antisymmetric, therefore the total area
under the curve from −1 to 1 sums to zero. The second graph shows that
f(1) = f(−1). Hence for f(x) = 1

2x
2 we have∫ 1

−1
f ′(x) dx = f(1)− f(−1) = 0

23

Line integrals

Line integrals are easily computed by converting the coordinates x, y and z
into functions of t. This has the effect of changing the measure as well. For
instance, dx becomes (dx/dt) dt. The following line integral problems are
from Advanced Calculus, Fifth Edition by Wilfred Kaplan.

Evaluate
∫
y2 dx along the straight line from (0, 0) to (2, 2).

x=2t
y=2t
defint(y^2*d(x,t),t,0,1)

8
3

Evaluate
∫
y dx along the straight line from (2, 1) to (1, 2).

x=2-t
y=t+1
defint(y*d(x),t,0,1)

−3
2

Evaluate
∫
x dy along the straight line from (1, 1) to (2, 1).

x=t+1
y=1
defint(x*d(y),t,0,1)

0

Evaluate
∫
z dx+ x dy + y dz along the path x = 2t+ 1, y = t2, z = 1 + t3,

0 ≤ t ≤ 1.

x=2t+1
y=t^2
z=1+t^3
f=z*d(x)+x*d(y)+y*d(z)
defint(f,t,0,1)

163
30

24

Surface area

Let S be a surface parameterized by x and y. That is, let S = (x, y, z) where
z = f(x, y). The tangent lines at a point on S form a tiny parallelogram.
The area a of the parallelogram is given by the magnitude of the cross
product.

a =
∣∣∣∣∂S∂x × ∂S

∂y

∣∣∣∣
By summing over all the parallelograms we obtain the total surface area A.
Hence

A =
∫∫

dA =
∫∫

a dx dy

The following example computes the surface area of a unit disk parallel to
the xy plane.

z=2
S=(x,y,z)
a=abs(cross(d(S,x),d(S,y)))
defint(a,y,-sqrt(1-x^2),sqrt(1-x^2),x,-1,1)

π

The result is π, the area of a unit circle, which is what we expect. The
following example computes the surface area of z = x2 + 2y over a unit
square.

z=x^2+2y
S=(x,y,z)
a=abs(cross(d(S,x),d(S,y)))
defint(a,x,0,1,y,0,1)

3
2

+
5
8

log(5)

As a practical matter, f(x, y) must be very simple in order for Eigenmath
to solve the double integral.

25

Find the area of the spiral ramp defined by2

S =

u cos v
u sin v
v

 , 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π

In this example, the coordinates x, y and z are all functions of an indepen-
dent parameter space.

x=u*cos(v)
y=u*sin(v)
z=v
S=(x,y,z)
a=abs(cross(d(S,u),d(S,v)))
defint(a,u,0,1,v,0,3pi)

3
2
π log(1 + 21/2) +

3π
21/2

float

10.8177

2Williamson and Trotter, Multivariable Mathematics, p. 598.

26

Surface integrals

A surface integral is like adding up all the wind on a sail. In other words,
we want to compute ∫∫

F · n dA

where F · n is the amount of wind normal to a tiny parallelogram dA. The
integral sums over the entire area of the sail. Let S be the surface of the sail
parameterized by x and y. (In this model, the z direction points downwind.)
By the properties of the cross product we have the following for the unit
normal n and for dA.

n =
∂S
∂x ×

∂S
∂y∣∣∣∂S∂x × ∂S
∂y

∣∣∣ dA =
∣∣∣∣∂S∂x × ∂S

∂y

∣∣∣∣ dx dy
Hence ∫∫

F · n dA =
∫∫

F ·
(
∂S

∂x
× ∂S

∂y

)
dx dy

For example, evaluate the surface integral∫∫
S
F · n dσ

where F = xy2zi− 2x3j+ yz2k, S is the surface z = 1−x2− y2, x2 + y2 ≤ 1
and n is upper.3

Note that the surface intersects the xy plane in a circle. By the right hand
rule, crossing x into y yields n pointing upwards hence

n dσ =
(
∂S

∂x
× ∂S

∂y

)
dx dy

The following Eigenmath code computes the surface integral. The symbols
f and h are used as temporary variables.

z=1-x^2-y^2
F=(x*y^2*z,-2*x^3,y*z^2)
S=(x,y,z)
f=dot(F,cross(d(S,x),d(S,y)))
h=sqrt(1-x^2)
defint(f,y,-h,h,x,-1,1)

1
48
π

3Kaplan, Advanced Calculus, p. 313.

27

Green’s theorem

Green’s theorem tells us that∮
P dx+Qdy =

∫∫ (
∂Q

∂x
− ∂P

∂y

)
dx dy

Evaluate
∮

(2x3 − y3) dx + (x3 + y3) dy around the circle x2 + y2 = 1 using
Green’s theorem.4

It turns out that Eigenmath cannot solve the double integral over x and y
directly. Polar coordinates are used instead.

P=2x^3-y^3
Q=x^3+y^3
f=d(Q,x)-d(P,y)
x=r*cos(theta)
y=r*sin(theta)
f=eval(f)
defint(f*r,r,0,1,theta,0,2pi)

3
2
π

A few words of explanation are in order. The line f = eval(f) is necessary
to update f with the polar substitutions for x and y. The defint integrand
is f∗r because r dr dθ = dx dy.

Now let us try computing the line integral side of Green’s theorem and see
if we get the same result. We need to use the trick of converting sine and
cosine to exponentials so that Eigenmath can find a solution.

x=cos(t)
y=sin(t)
P=2x^3-y^3
Q=x^3+y^3
f=P*d(x,t)+Q*d(y,t)
f=circexp(f)
defint(f,t,0,2pi)

3
2
π

4Wilfred Kaplan, Advanced Calculus, 5th Edition, 287.

28

Stokes’ theorem

Stokes’ theorem proves the following equivalence of line and surface integrals.∮
P dx+Qdy +Rdz =

∫∫
S

(curl F) · n dσ

where F = (P,Q,R). For S parametrized by x and y we have

n dσ =
(
∂S

∂x
× ∂S

∂y

)
dx dy

In many cases, converting an integral according to Stokes’ theorem can turn
a difficult problem into an easy one.

Let F = (y, z, x) and let S be the part of the paraboloid z = 4 − x2 − y2

that is above the xy plane. The perimeter of the paraboloid is the circle
x2 + y2 = 2. Calculate both the line and surface integrals. It turns out that
we need to use polar coordinates so that defint can succeed.

--Surface integral
z=4-x^2-y^2
F=(y,z,x)
S=(x,y,z)
f=dot(curl(F),cross(d(S,x),d(S,y)))
x=r*cos(theta)
y=r*sin(theta)
f=eval(f)
defint(f*r,r,0,2,theta,0,2pi)

−4π

--Line integral
x=2*cos(t)
y=2*sin(t)
z=4-x^2-y^2
P=y
Q=z
R=x
f=P*d(x,t)+Q*d(y,t)+R*d(z,t)
f=circexp(f)
defint(f,t,0,2pi)

−4π

29

François Viète

François Viète was the first to discover an exact formula for π. Here is his
formula.

2
π

=
√

2
2
×

√
2 +
√

2
2

×

√
2 +

√
2 +
√

2

2
× · · ·

Let a0 = 0 and an =
√

2 + an−1. Then we can write

2
π

=
a1

2
× a2

2
× a3

2
× · · ·

Solving for π we have

π = 2× 2
a1
× 2
a2
× 2
a3
× · · · = 2

∞∏
k=1

2
ak

Let us now use Eigenmath to compute π according to Viète’s formula. Of
course, we cannot calculate all the way out to infinity, we have to stop
somewhere. It turns out that nine factors are just enough to get six digits
of accuracy.

a(n)=test(n=0,0,sqrt(2+a(n-1)))
float(2*product(k,1,9,2/a(k)))

3.14159

The function a(n) calls itself n times so overall there are 54 calls to a(n). By
using a different algorithm with temporary variables, we can get the answer
in just nine steps.

a=0
b=2
for(k,1,9,a=sqrt(2+a),b=b*2/a)
float(b)

3.14159

30

Curl in tensor form

The curl of a vector function can be expressed in tensor form as

curl F = εijk
∂Fk
∂xj

where εijk is the Levi-Civita tensor. The following script demonstrates that
this formula is equivalent to computing curl the old fashioned way.

-- Define epsilon.
epsilon=zero(3,3,3)
epsilon[1,2,3]=1
epsilon[2,3,1]=1
epsilon[3,1,2]=1
epsilon[3,2,1]=-1
epsilon[1,3,2]=-1
epsilon[2,1,3]=-1
-- F is a generic vector function.
F=(FX(),FY(),FZ())
-- A is the curl of F.
A=outer(epsilon,d(F,(x,y,z)))
A=contract(A,3,4) --sum across k
A=contract(A,2,3) --sum across j
-- B is the curl of F computed the old fashioned way.
BX=d(F[3],y)-d(F[2],z)
BY=d(F[1],z)-d(F[3],x)
BZ=d(F[2],x)-d(F[1],y)
B=(BX,BY,BZ)
-- Are A and B equal? Subtract to find out.
A-B  0

0
0



31

The following is a variation on the previous script. The product εijk ∂Fk/∂xj
is computed in just one line of code. In addition, the outer product and the
contraction across k are now computed with a dot product.

F=(FX(),FY(),FZ())
epsilon=zero(3,3,3)
epsilon[1,2,3]=1
epsilon[2,3,1]=1
epsilon[3,1,2]=1
epsilon[3,2,1]=-1
epsilon[1,3,2]=-1
epsilon[2,1,3]=-1
A=contract(dot(epsilon,d(F,(x,y,z))),2,3)
BX=d(F[3],y)-d(F[2],z)
BY=d(F[1],z)-d(F[3],x)
BZ=d(F[2],x)-d(F[1],y)
B=(BX,BY,BZ)
-- Are A and B equal? Subtract to find out.
A-B  0

0
0



32

Quantum harmonic oscillator

For total energy E, kinetic energy K and potential energy V we have

E = K + V

The corresponding formula for a quantum harmonic oscillator is

(2n+ 1)ψ = −d
2ψ

dx2
+ x2ψ

where n is an integer and represents the quantization of energy values. The
solution to the above equation is

ψn(x) = exp(−x2/2)Hn(x)

where Hn(x) is the nth Hermite polynomial in x. The following Eigenmath
code checks E = K + V for n = 7.

n=7
psi=exp(-x^2/2)*hermite(x,n)
E=(2*n+1)*psi
K=-d(psi,x,x)
V=x^2*psi
E-K-V

0

33

Hydrogen wavefunctions

Hydrogen wavefunctions ψ are solutions to the differential equation

ψ

n2
= ∇2ψ +

2ψ
r

where n is an integer representing the quantization of total energy and r
is the radial distance of the electron. The Laplacian operator in spherical
coordinates is

∇2 =
1
r2

∂

∂r

(
r2
∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2

The general form of ψ is

ψ = rle−r/nL2l+1
n−l−1(2r/n)P |m|l (cos θ)eimφ

where L is a Laguerre polynomial, P is a Legendre polynomial and l and m
are integers such that

1 ≤ l ≤ n− 1, −l ≤ m ≤ l

The general form can be expressed as the product of a radial wavefunction
R and a spherical harmonic Y .

ψ = RY, R = rle−r/nL2l+1
n−l−1(2r/n), Y = P

|m|
l (cos θ)eimφ

The following code checks E = K + V for n, l,m = 7, 3, 1.

laplacian(f)=1/r^2*d(r^2*d(f,r),r)+
1/(r^2*sin(theta))*d(sin(theta)*d(f,theta),theta)+
1/(r*sin(theta))^2*d(f,phi,phi)
n=7
l=3
m=1
R=r^l*exp(-r/n)*laguerre(2*r/n,n-l-1,2*l+1)
Y=legendre(cos(theta),l,abs(m))*exp(i*m*phi)
psi=R*Y
E=psi/n^2
K=laplacian(psi)
V=2*psi/r
simplify(E-K-V)

0

34

Space shuttle and Corvette

The space shuttle accelerates from zero to 17,000 miles per hour in 8 minutes.
A Corvette accelerates from zero to 60 miles per hour in 4.5 seconds. The
following script compares the two.

vs=17000*"mile"/"hr"
ts=8*"min"/(60*"min"/"hr")
as=vs/ts
as
vc=60*"mile"/"hr"
tc=4.5*"sec"/(3600*"sec"/"hr")
ac=vc/tc
ac
"Time for Corvette to reach orbital velocity:"
vs/ac
vs/ac*60*"min"/"hr"

Here is the result when the script runs. It turns out that the space shuttle
accelerates more than twice as fast as a Corvette.

as =
127500 mile

(hr)2

ac =
48000 mile

(hr)2

Time for Corvette to reach orbital velocity:

0.354167 hr

21.25 min

35

abs

abs(x) returns the absolute value or vector length of x. The mag function
should be used for complex x.

P=(x,y)
abs(P)

(x2 + y2)1/2

adj

adj(m) returns the adjunct of matrix m.

and

and(a, b, . . .) returns the logical “and” of predicate expressions.

arccos

arccos(x) returns the inverse cosine of x.

arccosh

arccosh(x) returns the inverse hyperbolic cosine of x.

arcsin

arcsin(x) returns the inverse sine of x.

arcsinh

arcsinh(x) returns the inverse hyperbolic sine of x.

arctan

arcttan(x) returns the inverse tangent of x.

36

arctanh

arctanh(x) returns the inverse hyperbolic tangent of x.

arg

arg(z) returns the angle of complex z.

ceiling

ceiling(x) returns the smallest integer not less than x.

check

check(x) In a script, if the predicate x is true then continue, else stop.

choose

choose(n, k) returns
(
n

k

)

circexp

circexp(x) returns expression x with circular functions converted to expo-
nential forms. Sometimes this will simplify an expression.

coeff

coeff(p, x, n) returns the coefficient of xn in polynomial p.

cofactor

cofactor(m, i, j) returns of the cofactor of matrix m with respect to row i
and column j.

conj

conj(z) returns the complex conjugate of z.

37

contract

contract(a, i, j) returns tensor a summed over indices i and j. If i and j
are omitted then indices 1 and 2 are used. contract(m) is equivalent to the
trace of matrix m.

cos

cos(x) returns the cosine of x.

cosh

cosh(x) returns the hyperbolic cosine of x.

cross

cross(u, v) returns the cross product of vectors u and v.

curl

curl(u) returns the curl of vector u.

d

d(f, x) returns the derivative of f with respect to x.

defint

defint(f, x, a, b, . . .) returns the definite integral of f with respect to x eval-
uated from a to b. The argument list can be extended for multiple integrals.
For example, d(f, x, a, b, y, c, d).

deg

deg(p, x) returns the degree of polynomial p in x.

38

denominator

denominator(x) returns the denominator of expression x.

det

det(m) returns the determinant of matrix m.

do

do(a, b, . . .) evaluates the argument list from left to right. Returns the result
of the last argument.

dot

dot(a, b, . . .) returns the dot product of tensors.

draw

draw(f, x) draws the function f with respect to x.

erf

erf(x) returns the error function of x.

erfc

erf(x) returns the complementary error function of x.

eval

eval(f, x, n) returns f evaluated at x = n.

exp

exp(x) returns ex.

39

expcos

expcos(x) returns the cosine of x in exponential form.

expcos(x)

1
2

exp(−ix) +
1
2

exp(ix)

expsin

expsin(x) returns the sine of x in exponential form.

expsin(x)

1
2
i exp(−ix)− 1

2
i exp(ix)

factor

factor(n) factors the integer n.

factor(12345)

3× 5× 823

factor(p, x) factors polynomial p in x. The last argument can be omitted
for polynomials in x. The argument list can be extended for multivariate
polynomials. For example, factor(p, x, y) factors p over x and then over y.

factor(125*x^3-1)

(5x− 1)(25x2 + 5x+ 1)

factorial

Example:

10!

3628800

40

filter

filter(f, a, b, . . .) returns f with terms involving a, b, etc. removed.

1/a+1/b+1/c

1
a

+
1
b

+
1
c

filter(last,a)

1
b

+
1
c

float

float(x) converts x to a floating point value.

sum(n,0,20,(-1/2)^n)

699051
1048576

float(last)

0.666667

floor

floor(x) returns the largest integer not greater than x.

for

for(i, j, k, a, b, . . .) For i equals j through k evaluate a, b, etc.

x=0
y=2
for(k,1,9,x=sqrt(2+x),y=2*y/x)
float(y)

3.14159

41

gcd

gcd(a, b, . . .) returns the greatest common divisor.

hermite

hermite(x, n) returns the nth Hermite polynomial in x.

hilbert

hilbert(n) returns a Hilbert matrix of order n.

imag

imag(z) returns the imaginary part of complex z.

inner

inner(a, b, . . .) returns the inner product of tensors. Same as the dot product.

integral

integral(f, x) returns the integral of f with respect to x.

inv

inv(m) returns the inverse of matrix m.

isprime

isprime(n) returns 1 if n is prime, zero otherwise.

isprime(2^53-111)

1

42

laguerre

laguerre(x, n, a) returns the nth Laguerre polynomial in x. If a is omitted
then a = 0 is used.

lcm

lcm(a, b, . . .) returns the least common multiple.

legendre

legendre(x, n,m) returns the nth Legendre polynomial in x. If m is omitted
then m = 0 is used.

log

log(x) returns the natural logarithm of x.

mag

mag(z) returns the magnitude of complex z.

mod

mod(a, b) returns the remainder of a divided by b.

not

not(x) negates the result of predicate expression x.

nroots

nroots(p, x) returns all of the roots, both real and complex, of polynomial p
in x. The roots are computed numerically. The coefficients of p can be real
or complex.

43

numerator

numerator(x) returns the numerator of expression x.

or

or(a, b, . . .) returns the logical “or” of predicate expressions.

outer

outer(a, b, . . .) returns the outer product of tensors.

polar

polar(z) converts complex z to polar form.

prime

prime(n) returns the nth prime number, 1 ≤ n ≤ 10,000.

print

print(a, b, . . .) evaluates expressions and prints the results.. Useful for print-
ing from inside a “for” loop.

product

product(i, j, k, f) returns
k∏
i=j

f

quote

quote(x) returns expression x unevaluated.

quotient

quotient(p, q, x) returns the quotient of polynomials in x.

44

rank

rank(a) returns the number of indices that tensor a has. A scalar has no
indices so its rank is zero.

rationalize

rationalize(x) puts everything over a common denominator.

rationalize(a/b+b/a)

a2 + b2

ab

real

real(z) returns the real part of complex z.

rect

rect(z) returns complex z in rectangular form.

roots

roots(p, x) returns the values of x such that the polynomial p(x) = 0. The
polynomial should be factorable over integers.

simplify

simplify(x) returns x in a simpler form.

sin

sin(x) returns the sine of x.

sinh

sinh(x) returns the hyperbolic sine of x.

45

sqrt

sqrt(x) returns the square root of x.

stop

In a script, it does what it says.

subst

subst(a, b, c) substitutes a for b in c and returns the result.

sum

sum(i, j, k, f) returns
k∑
i=j

f

tan

tan(x) returns the tangent of x.

tanh

tanh(x) returns the hyperbolic tangent of x.

taylor

taylor(f, x, n, a) returns the Taylor expansion of f of x at a. The argument
n is the degree of the expansion. If a is omitted then a = 0 is used.

taylor(1/cos(x),x,4)

5
24
x4 +

1
2
x2 + 1

46

test

test(a, b, c, d, . . .) If a is true then b is returned else if c is true then d is
returned, etc. If the number of arguments is odd then the last argument is
returned when all else fails.

transpose

transpose(a, i, j) returns the transpose of tensor a with respect to indices i
and j. If i and j are omitted then 1 and 2 are used. Hence a matrix can be
transposed with a single argument.

A=((a,b),(c,d))
transpose(A) (

a c
b d

)

unit

unit(n) returns an n× n identity matrix.

unit(2) (
1 0
0 1

)

zero

zero(i, j, . . .) returns a null tensor with dimensions i, j, etc. Useful for
creating a tensor and then setting the component values.

47

Index

built-in functions, 36

complex numbers, 14

derivative, 19

fundamental theorem of calculus, 23

gradient, 19
Green’s theorem, 28

hydrogen wavefunctions, 34

integral, 21

line integral, 24
linear algebra, 16

scripts, 12
Stokes’ theorem, 29
surface integral, 27

trace, 38

units of measure, 8

48

